
Implementing
Domain Driven Design
A practical guide for implementing the Domain Driven Design
with the ABP Framework

Halil İbrahim Kalkan

Implementing Domain Driven Design

Implementing
Domain Driven Design

A practical guide for implementing the Domain
Driven Design with the ABP Framework

Halil İbrahim Kalkan

Author: Halil İbrahim Kalkan

Designer: Melis Platin

Publish Date: June, 2021 (First Edition)

Copyright 2021 @ Volosoft, All rights reserved

2

Implementing Domain Driven Design

CONTENTS

Introduction ………………………………………………………………………………………………….. 4

What is the Domain Driven Design? ……………………………………..….……..... 7

Implementation: The Big Picture …………………………………………….……….... 12

Goal ……….….…….........…...... 5

Simple Code ………………………………..……………….………………………………….……………….……...…..... 6

OOP & SOLID …………………………………………………………………………………………..…………...……....... 7

DDD Layers & Clean Architecture ……………………….………………………….…………....……..... 8

Core Building Blocks ………………………………….…………….………………………….…………..………... 10

Layering of a .NET Solution ………………………………………………………………..……….….……....... 12

Dependencies of the Projects in the Solution ………………….……….…………...……..... 18

Execution Flow of a DDD Based Application …………………………………...…….……..... 22

Common Principles …………………………………………..……………………………….……….…….…........ 23

3

Implementing Domain Driven Design

CONTENTS

Implementation: The Building Blocks ………………………..………………….... 28

Example Use Cases …………………………………………………………………………….......… 82

Domain Logic & Application Logic …………………………………………………...…. 95

Reference Books …………………………………………………………………………………...….. 106

The Example Domain ……….……………………………………………………………….…….….…….…….... 28

Aggregates ………………………………..……………….…….…………………………….…….………….………....... 29

Repositories …….……………………………………………………………………………………..……….……..…….... 52

Specifications …………………………………………………….……….………………………….……….…….…....... 57

Domain Services ……………………………………...….…………….………………………….……….……..…...... 64

Application Services …………………………….………….……….………………………….……….…...…........ 68

Data Transfer Objects ……………………………………………….………………………….……….…..……..... 71

Entity Creation ……………………………………...….…………...….………………………….……….……….…...... 82

Updating / Manipulating An Entity …………………………….………….…….……….……...……..... 91

Multiple application Layers ……………………………..….………………………….……….…………..….... 96

Examples ……………………………………………………..……………………….………….…….……….……..……….... 98

Implementing Domain Driven Design

INTRODUCTION

This is a practical guide for implementing the Domain Driven
Design (DDD). While the implementation details rely on the
ABP Framework infrastructure, core concepts, principles and
patterns are applicable in any kind of solution, even if it is not a
.NET solution.

4

Implementing Domain Driven Design

Goal

The goals of this book are;

● Introduce and explain the DDD architecture, concepts,
principles, patterns and building blocks.

● Explain the layered architecture & solution structure
offered by the ABP Framework.

● Introduce explicit rules to implement DDD patterns and
best practices by giving concrete examples.

● Show what ABP Framework provides you as the
infrastructure for implementing DDD in a proper way.

● And finally, provide suggestions based on software
development best practices and our experiences to
create a maintainable codebase.

5

Implementing Domain Driven Design

Simple Code!

Playing football is very simple, but playing simple football is
the hardest thing there is. — Johan Cruyff

If we take this famous quote for programming, we can say;

Writing code is very simple, but writing simple code is the
hardest thing there is. — ???

In this document, we will introduce simple rules, those are
easy to implement.

Once your application grows, it will be hard to follow these
rules. Sometimes you find breaking rules will save you time in a
short term. However, the saved time in the short term will bring
much more time loss in the middle and long term. Your code
base becomes complicated and hard to maintain. Most of the
business applications are re-written just because you can't
maintain it anymore.

If you follow the rules and best practices, your code base will
be simpler and easier to maintain. Your application reacts to
changes faster.

6

7

Implementing Domain Driven Design

What is the Domain Driven Design?

Domain-driven design (DDD) is an approach to software
development for complex needs by connecting the
implementation to an evolving model;

DDD is suitable for complex domains and large-scale
applications rather than simple CRUD applications. It focuses
on the core domain logic rather than the infrastructure details.
It helps to build a flexible, modular and maintainable code
base.

OOP & SOLID

Implementing DDD highly relies on the Object Oriented
Programming (OOP) and SOLID principles. Actually, it
implements and extends these principles. So, a good
understanding of OOP & SOLID helps you a lot while truly
implementing the DDD.

https://en.wikipedia.org/wiki/SOLID

8

Implementing Domain Driven Design

DDD Layers & Clean Architecture

There are four fundamental layers of a Domain Driven
Based Solution;

Business Logic places into two layers, the Domain layer and
the Application Layer, while they contain different kinds of
business logic;

● Domain Layer implements the core, use-case
independent business logic of the domain/system.

● Application Layer implements the use cases of the
application based on the domain. A use case can be
thought as a user interaction on the User Interface (UI).

9

Implementing Domain Driven Design

● Presentation Layer contains the UI elements (pages,
components) of the application.

● Infrastructure Layer supports other layer by
implementing the abstractions and integrations to
3rd-party library and systems.

The same layering can be shown as the diagram below and
known as the Clean Architecture, or sometimes the Onion
Architecture:

In the Clean Architecture, each layer only depends on the layer
directly inside it. The most independent layer is shown in the
most inner circle and it is the Domain Layer.

10

Implementing Domain Driven Design

Core Building Blocks

DDD mostly focuses on the Domain & Application Layers and
ignores the Presentation and Infrastructure. They are seen as
details and the business layers should not depend on them.

That doesn't mean the Presentation and Infrastructure layers
are not important. They are very important. UI frameworks and
database providers have their own rules and best practices that
you need to know and apply. However these are not in the
topics of DDD.

This section introduces the essential building blocks of the
Domain & Application Layers.

Domain Layer Building Blocks

● Entity: An Entity is an object with its own properties
(state, data) and methods that implements the business
logic that is executed on these properties. An entity is
represented by its unique identifier (Id). Two entity object
with different Ids are considered as different entities.

● Value Object: A Value Object is another kind of domain
object that is identified by its properties rather than a
unique Id. That means two Value Objects with same
properties are considered as the same object. Value
objects are generally implemented as immutable and
mostly are much simpler than the Entities.

https://docs.abp.io/en/abp/latest/Entities
https://docs.abp.io/en/abp/latest/Value-Objects

11

Implementing Domain Driven Design

● Aggregate & Aggregate Root: An Aggregate is a cluster
of objects (entities and value objects) bound together by
an Aggregate Root object. The Aggregate Root is a
specific type of an entity with some additional
responsibilities.

● Repository (interface): A Repository is a collection-like
interface that is used by the Domain and Application
Layers to access to the data persistence system (the
database). It hides the complexity of the DBMS from the
business code. Domain Layer contains the interfaces of the
repositories.

● Domain Service: A Domain Service is a stateless service
that implements core business rules of the domain. It is
useful to implement domain logic that depends on
multiple aggregate (entity) type or some external
services.

● Specification: A Specification is used to define named,
reusable and combinable filters for entities and other
business objects.

● Domain Event: A Domain Event is a way of informing
other services in a loosely coupled manner, when a
domain specific event occurs.

https://docs.abp.io/en/abp/latest/Entities
https://docs.abp.io/en/abp/latest/Repositories
https://docs.abp.io/en/abp/latest/Domain-Services
https://docs.abp.io/en/abp/latest/Specifications
https://docs.abp.io/en/abp/latest/Event-Bus

12

Implementing Domain Driven Design

Application Layer Building Blocks

● Application Service: An Application Service is a stateless
service that implements use cases of the application. An
application service typically gets and returns DTOs. It is
used by the Presentation Layer. It uses and coordinates
the domain objects to implement the use cases. A use
case is typically considered as a Unit Of Work.

● Data Transfer Object (DTO): A DTO is a simple object
without any business logic that is used to transfer state
(data) between the Application and Presentation Layers.

● Unit of Work (UOW): A Unit of Work is an atomic work
that should be done as a transaction unit. All the
operations inside a UOW should be committed on
success or rolled back on a failure.

Implementation: The Big Picture

Layering of a .NET Solution

The picture below shows a Visual Studio Solution created using
the ABP's application startup template:

https://docs.abp.io/en/abp/latest/Application-Services
https://docs.abp.io/en/abp/latest/Data-Transfer-Objects
https://docs.abp.io/en/abp/latest/Unit-Of-Work
https://docs.abp.io/en/abp/latest/Startup-Templates/Application

13

Implementing Domain Driven Design

The solution name is IssueTracking and it consists of multiple
projects. The solution is layered by considering DDD principles
as well as development and deployment practicals. The sub
sections below explains the projects in the solution;

Your solution structure may be slightly different if you
choose a different UI or Database provider. However, the
Domain and Application layers will be same and this is the
essential point for the DDD perspective. See the
Application Startup Template document if you want to
know more about the solution structure.

https://docs.abp.io/en/abp/latest/Startup-Templates/Application

14

Implementing Domain Driven Design

The Domain Layer

The Domain Layer is splitted into two projects;

● IssueTracking.Domain is the essential domain layer that
contains all the building blocks (entities, value objects,
domain services, specifications, repository interfaces, etc.)
introduced before.

● IssueTracking.Domain.Shared is a thin project that
contains some types those belong to the Domain Layer,
but shared with all other layers. For example, it may
contain some constants and enums related to the
Domain Objects but need to be reused by other layers.

The Application Layer

The Application Layer is also splitted into two projects;

● IssueTracking.Application.Contracts contains the
application service interfaces and the DTOs used by
these interfaces. This project can be shared by the client
applications (including the UI).

● IssueTracking.Application is the essential application
layer that implements the interfaces defined in the
Contracts project.

15

Implementing Domain Driven Design

The Presentation Layer

● IssueTracking.Web is an ASP.NET Core MVC / Razor Pages
application for this example. This is the only executable
application that serves the application and the APIs.

ABP Framework also supports different kind of UI frameworks
including Angular and Blazor. In these cases, the
IssueTracking.Web doesn't exist in the solution. Instead, an
IssueTracking.HttpApi.Host application will be in the solution to
serve the HTTP APIs as a standalone endpoint to be consumed
by the UI applications via HTTP API calls.

The Remote Service Layer

● IssueTracking.HttpApi project contains HTTP APIs defined
by the solution. It typically contains MVC Controllers and
related models, if available. So, you write your HTTP APIs
in this project.

https://docs.abp.io/en/abp/latest/UI/Angular/Quick-Start
https://docs.abp.io/en/abp/latest/UI/Blazor/Overall

16

Implementing Domain Driven Design

Most of the time, API Controllers are just wrappers around the
Application Services to expose them to the remote clients. Since
ABP Framework's Automatic API Controller System
automatically configures and exposes your Application
Services as API Controllers, you typically don't create
Controllers in this project. However, the startup solution includes
it for the cases you need to manually create API controllers.

● IssueTracking.HttpApi.Client project is useful when you
have a C# application that needs to consume your HTTP
APIs. Once the client application references this project, it
can directly inject & use the Application Services. This is
possible by the help of the ABP Framework's Dynamic C#
Client API Proxies System.

There is a Console Application in the test folder of the solution,
named IssueTracking.HttpApi.Client.ConsoleTestApp. It simply
uses the IssueTracking.HttpApi.Client project to consume the
APIs exposed by the application. It is just a demo application
and you can safely delete it. You can even delete the
IssueTracking.HttpApi.Client project if you think that you don't
need to them.

https://docs.abp.io/en/abp/latest/API/Auto-API-Controllers
https://docs.abp.io/en/abp/latest/Dependency-Injection
https://docs.abp.io/en/abp/latest/API/Dynamic-CSharp-API-Clients
https://docs.abp.io/en/abp/latest/API/Dynamic-CSharp-API-Clients

17

Implementing Domain Driven Design

The Infrastructure Layer

In a DDD implementation, you may have a single Infrastructure
project to implement all the abstractions and integrations, or
you may have different projects for each dependency.

We suggest a balanced approach; Create separate projects for
main infrastructure dependencies (like Entity Framework Core)
and a common infrastructure project for other infrastructure.

ABP's startup solution has two projects for the Entity
Framework Core integration;

● IssueTracking.EntityFrameworkCore is the essential
integration package for the EF Core. Your application's
DbContext, database mappings, implementations of the
repositories and other EF Core related stuff are located
here.

● IssueTracking.EntityFrameworkCore.DbMigrations is a
special project to manage the Code First database
migrations. There is a separate DbContext in this project
to track the migrations. You typically don't touch this
project much except you need to create a new database
migration or add an application module that has some
database tables and naturally requires to create a new
database migration.

https://docs.abp.io/en/abp/latest/Modules/Index

18

Implementing Domain Driven Design

You may wonder why there are two projects for the EF Core. It is
mostly related to modularity. Each module has its own
independent DbContext and your application has also one
DbContext. DbMigrations project contains a union of the
modules to track and apply a single migration path. While most
of the time you don't need to know it, you can see the EF Core
migrations document for more information.

Other Projects

There is one more project, IssueTracking.DbMigrator, that is a
simple Console Application that migrates the database schema
and seeds the initial data when you execute it. It is a useful
utility application that you can use it in development as well as
in production environment.

Dependencies of the Projects in the Solution

The diagram below shows the essential dependencies (project
references) between the projects in the solution (IssueTracking.
part is not shown to be simple)

https://docs.abp.io/en/abp/latest/Module-Development-Basics
https://docs.abp.io/en/abp/latest/Entity-Framework-Core-Migrations
https://docs.abp.io/en/abp/latest/Entity-Framework-Core-Migrations
https://docs.abp.io/en/abp/latest/Data-Seeding

19

Implementing Domain Driven Design

The projects have been explained before. Now, we can explain
the reasons of the dependencies;

● Domain.Shared is the project that all other projects
directly or indirectly depend on. So, all the types in this
project are available to all projects.

● Domain only depends on the Domain.Shared because it
is already a (shared) part of the domain. For example, an
IssueType enum in the Domain.Shared can be used by an
Issue entity in the Domain project.

● Application.Contracts depends on the Domain.Shared. In
this way, you can reuse these types in the DTOs. For
example, the same IssueType enum in the
Domain.Shared can be used by a CreateIssueDto as a
property.

20

Implementing Domain Driven Design

● Application depends on the Application.Contracts since it
implements the Application Service interfaces and uses
the DTOs inside it. It also depends on the Domain since
the Application Services are implemented using the
Domain Objects defined inside it.

● EntityFrameworkCore depends on the Domain since it
maps the Domain Objects (entities and value types) to
database tables (as it is an ORM) and implements the
repository interfaces defined in the Domain.

● HttpApi depends on the Application.Contracts since the
Controllers inside it inject and use the Application Service
interfaces as explained before.

● HttpApi.Client depends on the Application.Contracts
since it can consume the Application Services as
explained before.

● Web depends on the HttpApi since it serves the HTTP
APIs defined inside it. Also, in this way, it indirectly
depends on the Application.Contracts project to consume
the Application Services in the Pages/Components.

21

Implementing Domain Driven Design

Dashed Dependencies

When you investigate the solution, you will see two more
dependencies shown with the dashed lines in the figure above.
Web project depends on the Application and
EntityFrameworkCore projects which theoretically should not
be like that but actually it is.

This is because the Web is the final project that runs and hosts
the application and the application needs the
implementations of the Application Services and the
Repositories while running.

This design decision potentially allows you to use Entities and
EF Core objects in the Presentation Layer which should be
strictly avoided. However, we find the alternative designs over
complicated. Here, two of the alternatives if you want to remove
this dependency;

● Convert Web project to a razor class library and create a
new project, like Web.Host, that depends on the Web,
Application and EntityFrameworkCore projects and hosts
the application. You don't write any UI code here, but use
only for hosting.

● Remove Application and EntityFrameworkCore
dependencies from the Web project and load their
assemblies on application initialization. You can use ABP's
Plug-In Modules system for that purpose.

https://docs.abp.io/en/abp/latest/PlugIn-Modules

22

Implementing Domain Driven Design

Execution Flow of a DDD Based Application

The figure below shows a typical request flow for a web
application that has been developed based on DDD patterns.

● The request typically begins with a user interaction on the
UI (a use case) that causes an HTTP request to the server.

● An MVC Controller or a Razor Page Handler in the
Presentation Layer (or in the Distributed Services Layer)
handles the request and can perform some cross cutting
concerns in this stage (Authorization, Validation,
Exception Handling, etc.). A Controller/Page injects the
related Application Service interface and calls its
method(s) by sending and receiving DTOs.

https://docs.abp.io/en/abp/latest/Authorization
https://docs.abp.io/en/abp/latest/Validation
https://docs.abp.io/en/abp/latest/Exception-Handling

23

Implementing Domain Driven Design

● The Application Service uses the Domain Objects
(Entities, Repository interfaces, Domain Services, etc.) to
implement the use case. Application Layer implements
some cross cutting concerns (Authorization, Validation,
etc.). An Application Service method should be a Unit Of
Work. That means it should be atomic.

Most of the cross cutting concerns are automatically and
conventionally implemented by the ABP Framework and you
typically don't need to write code for them.

Common Principles

Before going into details, let's see some overall DDD principles;

Database Provider / ORM Independence

The domain and the application layers should be ORM /
Database Provider agnostic. They should only depend on the
Repository interfaces and the Repository interfaces don't use
any ORM specific objects.

https://docs.abp.io/en/abp/latest/Unit-Of-Work
https://docs.abp.io/en/abp/latest/Unit-Of-Work

24

Implementing Domain Driven Design

Here, the main reasons of this principle;

1. To make your domain/application infrastructure
independent since the infrastructure may change in the
future or you may need to support a second database type
later.

2. To make your domain/application focus on the business
code by hiding the infrastructure details behind the
repositories.

3. To make your automated tests easier since you can mock
the repositories in this case.

As a respect to this principle, none of the projects in the solution
has reference to the EntityFrameworkCore project, except the
startup application.

Discussion About the Database Independence
Principle

Especially, the reason 1 deeply effects your domain object
design (especially, the entity relations) and application code.
Assume that you are using Entity Framework Core with a
relational database. If you are willing to make your application
switchable to MongoDB later, you can't use some very useful
EF Core features.

https://docs.abp.io/en/abp/latest/Entity-Framework-Core
https://docs.abp.io/en/abp/latest/MongoDB

25

Implementing Domain Driven Design

Examples;

● You can't assume Change Tracking since MongoDB
provider can't do it. So, you always need to explicitly
update the changed entities.

● You can't use Navigation Properties (or Collections) to
other Aggregates in your entities since this is not possible
for a Document Database. See the "Rule: Reference Other
Aggregates Only By Id" section for more info.

If you think such features are important for you and you will
never stray from the EF Core, we believe that it is worth
stretching this principle. We still suggest to use the repository
pattern to hide the infrastructure details. But you can assume
that you are using EF Core while designing your entity relations
and writing your application code. You can even reference to the
EF Core NuGet Package from your application layer to be able to
directly use the asynchronous LINQ extension methods, like
ToListAsync() (see the IQueryable & Async Operations section in
the Repositories document for more info).

https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://docs.microsoft.com/en-us/ef/core/modeling/relationships?tabs=fluent-api%2Cfluent-api-simple-key%2Csimple-key
https://docs.abp.io/en/abp/latest/Repositories

26

Implementing Domain Driven Design

Presentation Technology Agnostic

The presentation technology (UI Framework) is one of the most
changed parts of a real world application. It is very important to
design the Domain and Application Layers to be completely
unaware of the presentation technology/framework. This
principle is relatively easy to implement and ABP's startup
template makes it even easier.

In some cases, you may need to have duplicate logic in the
application and presentation layers. For example, you may need
to duplicate the validation and authorization checks in both
layers. The checks in the UI layer is mostly for user experience
while checks in the application and domain layers are for
security and data integrity. That's perfectly normal and
necessary.

Focus on the State Changes, Not Reporting

DDD focuses on how the domain objects changes and
interactions; How to create an entity and change its properties
by preserving the data integrity/validity and implementing the
business rules.

27

Implementing Domain Driven Design

DDD ignores reporting and mass querying. That doesn't mean
they are not important. If your application doesn't have fancy
dashboards and reports, who would use it? However, reporting
is another topic. You typically want to use the full power of the
SQL Server or even use a separate data source (like
ElasticSearch) for reporting purpose. You will write optimized
queries, create indexes and even stored procedures(!). You are
free to do all these things as long as you don't infect them into
your business logic.

28

Implementing Domain Driven Design

Implementation: The Building Blocks

This is the essential part of this guide. We will introduce and
explain some explicit rules with examples. You can follow these
rules and apply in your solution while implementing the
Domain Driven Design.

The Example Domain

The examples will use some concepts those are used by GitHub,
like Issue, Repository, Label and User, you are already familiar
with. The figure below shows some of the aggregates,
aggregate roots, entities, value object and the relations
between them:

29

Implementing Domain Driven Design

Issue Aggregate consists of an Issue Aggregate Root that
contains Comment and IssueLabel collections. Other
aggregates are shown as simple since we will focus on the Issue
Aggregate:

Aggregates

As said before, an Aggregate is a cluster of objects (entities and
value objects) bound together by an Aggregate Root object.
This section will introduce the principles and rules related to the
Aggregates.

We refer the term Entity both for Aggregate Root and
sub-collection entities unless we explicitly write Aggregate Root
or sub-collection entity.

https://docs.abp.io/en/abp/latest/Entities

30

Implementing Domain Driven Design

Aggregate / Aggregate Root Principles

Business Rules

Entities are responsible to implement the business rules related
to the properties of their own. The Aggregate Root Entities are
also responsible for their sub-collection entities.

An aggregate should maintain its self integrity and validity by
implementing domain rules and constraints. That means,
unlike the DTOs, Entities have methods to implement some
business logic. Actually, we should try to implement business
rules in the entities wherever possible.

Single Unit

An aggregate is retrieved and saved as a single unit, with all
the sub-collections and properties. For example, if you want to
add a Comment to an Issue, you need to;

● Get the Issue from database with including all the
sub-collections (Comments and IssueLabels).

● Use methods on the Issue class to add a new comment,
like Issue.AddComment(...);.

● Save the Issue (with all sub-collections) to the database as
a single database operation (update).

31

Implementing Domain Driven Design

That may seem strange to the developers used to work with EF
Core & Relational Databases before. Getting the Issue with all
details seems unnecessary and inefficient. Why don't we just
execute an SQL Insert command to database without querying
any data?

The answer is that we should implement the business rules
and preserve the data consistency and integrity in the code. If
we have a business rule like "Users can not comment on the
locked issues", how can we check the Issue's lock state without
retrieving it from the database? So, we can execute the
business rules only if the related objects available in the
application code.

On the other hand, MongoDB developers will find this rule very
natural. In MongoDB, an aggregate object (with sub-collections)
is saved in a single collection in the database (while it is
distributed into several tables in a relational database). So, when
you get an aggregate, all the sub-collections are already
retrieved as a part of the query, without any additional
configuration.

ABP Framework helps to implement this principle in your
applications.

32

Implementing Domain Driven Design

Example: Add a comment to an issue

_issueRepository.GetAsync method retrieves the Issue with all
details (sub-collections) as a single unit by default. While this
works out of the box for MongoDB, you need to configure your
aggregate details for the EF Core. But, once you configure,
repositories automatically handle it. _issueRepository.GetAsync
method gets an optional parameter, includeDetails, that you
can pass false to disable this behavior when you need it.

33

Implementing Domain Driven Design

See the Loading Related Entities section of the EF Core
document for the configuration and alternative scenarios.

Issue.AddComment gets a userId and comment text,
implements the necessary business rules and adds the
comment to the Comments collection of the Issue.

Finally, we use _issueRepository.UpdateAsync to save changes
to the database.

EF Core has a change tracking feature. So, you actually don't
need to call _issueRepository.UpdateAsync. It will be
automatically saved thanks to ABP's Unit Of Work system that
automatically calls DbContext.SaveChanges() at the end of the
method. However, for MongoDB, you need to explicitly update
the changed entity.

So, if you want to write your code Database Provider
independent, you should always call the UpdateAsync method
for the changed entities.

https://docs.abp.io/en/abp/latest/Entity-Framework-Core
https://docs.abp.io/en/abp/latest/Entity-Framework-Core

34

Implementing Domain Driven Design

Transaction Boundary

An aggregate is generally considered as a transaction boundary.
If a use case works with a single aggregate, reads and saves it as
a single unit, all the changes made to the aggregate objects are
saved together as an atomic operation and you don't need to an
explicit database transaction.

However, in real life, you may need to change more than one
aggregate instances in a single use case and you need to use
database transactions to ensure atomic update and data
consistency. Because of that, ABP Framework uses an explicit
database transaction for a use case (an application service
method boundary). See the Unit Of Work documentation for
more info.

Serializability

An aggregate (with the root entity and sub-collections) should
be serializable and transferrable on the wire as a single unit. For
example, MongoDB serializes the aggregate to JSON document
while saving to the database and deserializes from JSON while
reading from the database.

This requirement is not necessary when you use relational
databases and ORMs. However, it is an important practice of
Domain Driven Design.

The following rules will already bring the serializability.

https://docs.abp.io/en/abp/latest/Unit-Of-Work

35

Implementing Domain Driven Design

Aggregate / Aggregate Root Rules & Best Practices

The following rules ensures implementing the principles
introduced above.

Reference Other Aggregates Only by ID

The first rule says an Aggregate should reference to other
aggregates only by their Id. That means you can not add
navigation properties to other aggregates.

● This rule makes it possible to implement the serializability
principle.

● It also prevents different aggregates manipulate each
other and leaking business logic of an aggregate to one
another.

You see two aggregate roots, GitRepository and Issue in the
example below;

36

Implementing Domain Driven Design

● GitRepository should not have a collection of the Issues
since they are different aggregates.

● Issue should not have a navigation property for the
related GitRepository since it is a different aggregate.

● Issue can have RepositoryId (as a Guid).

So, when you have an Issue and need to have GitRepository
related to this issue, you need to explicitly query it from
database by the RepositoryId.

For EF Core & Relational Databases

In MongoDB, it is naturally not suitable to have such navigation
properties/collections. If you do that, you find a copy of the
destination aggregate object in the database collection of the
source aggregate since it is being serialized to JSON on save.

However, EF Core & relational database developers may find this
restrictive rule unnecessary since EF Core can handle it on
database read and write. We see this an important rule that
helps to reduce the complexity of the domain prevents
potential problems and we strongly suggest to implement this
rule. However, if you think it is practical to ignore this rule, see
the Discussion About the Database Independence Principle
section above.

37

Implementing Domain Driven Design

Keep Aggregates Small

One good practice is to keep an aggregate simple and small.
This is because an aggregate will be loaded and saved as a
single unit and reading/writing a big object has performance
problems. See the example below:

Role aggregate has a collection of UserRole value objects to
track the users assigned for this role. Notice that UserRole is not
another aggregate and it is not a problem for the rule
Reference Other Aggregates Only By Id. However, it is a
problem in practical. A role may be assigned to thousands (even
millions) of users in a real life scenario and it is a significant
performance problem to load thousands of items whenever you
query a Role from database (remember: Aggregates are loaded
by their sub-collections as a single unit).

38

Implementing Domain Driven Design

On the other hand, User may have such a Roles collection since
a user doesn't have much roles in practical and it can be useful
to have a list of roles while you are working with a User
Aggregate.

If you think carefully, there is one more problem when Role and
User both have the list of relation when use a non-relational
database, like MongoDB. In this case, the same information is
duplicated in different collections and it will be hard to
maintain data consistency (whenever you add an item to
User.Roles, you need to add it to Role.Users too).

So, determine your aggregate boundaries and size based on the
following considerations;

● Objects used together.

● Query (load/save) performance and memory
consumption.

● Data integrity, validity and consistency.

In practical;

● Most of the aggregate roots will not have
sub-collections.

39

Implementing Domain Driven Design

● A sub-collection should not have more than 100-150
items inside it at the most case. If you think a collection
potentially can have more items, don't define the
collection as a part of the aggregate and consider to
extract another aggregate root for the entity inside the
collection.

Primary Keys on the Aggregate Roots / Entities

● An aggregate root typically has a single Id property for
its identifier (Primark Key: PK). We prefer Guid as the
PK of an aggregate root entity (see the Guid
Genertation document to learn why).

● An entity (that's not the aggregate root) in an
aggregate can use a composite primary key.

For example, see the Aggregate root and the Entity below:

https://docs.abp.io/en/abp/latest/Guid-Generation
https://docs.abp.io/en/abp/latest/Guid-Generation

40

Implementing Domain Driven Design

● Organization has a Guid identifier (Id).

● OrganizationUser is a sub-collection of an Organization
and has a composite primary key consists of the
OrganizationId and UserId.

That doesn't mean sub-collection entities should always have
composite PKs. They may have single Id properties when it's
needed.

Composite PKs are actually a concept of relational databases
since the sub-collection entities have their own tables and
needs to a PK. On the other hand, for example, in MongoDB you
don't need to define PK for the sub-collection entities at all since
they are stored as a part of the aggregate root.

Constructors of the Aggregate Roots / Entities

The constructor is located where the lifecycle of an entity
begins. There are a some responsibilities of a well designed
constructor:

● Gets the required entity properties as parameters to
create a valid entity. Should force to pass only for the
required parameters and may get non-required
properties as optional parameters.

41

Implementing Domain Driven Design

● Checks validity of the parameters.

● Initializes sub-collections.

Example Issue (Aggregate Root) constructor

42

Implementing Domain Driven Design

● Issue class properly forces to create a valid entity by
getting minimum required properties in its constructor as
parameters.

● The constructor validates the inputs
(Check.NotNullOrWhiteSpace(...) throws
ArgumentException if the given value is empty).

● It initializes the sub-collections, so you don't get a null
reference exception when you try to use the Labels
collection after creating the Issue.

● The constructor also takes the id and passes to the base
class. We don't generate Guids inside the constructor to
be able to delegate this responsibility to another service
(see Guid Generation).

● Private empty constructor is necessary for ORMs. We
made it private to prevent accidently using it in our own
code.

See the Entities document to learn more about creating entities
with the ABP Framework.

https://docs.abp.io/en/abp/latest/Guid-Generation
https://docs.abp.io/en/abp/latest/Entities

43

Implementing Domain Driven Design

Entity Property Accessors & Methods

The example above may seem strange to you! For example, we
force to pass a non-null Title in the constructor. However, the
developer may then set the Title property to null without any
control. This is because the example code above just focuses on
the constructor.

If we declare all the properties with public setters (like the
example Issue class above), we can't force validity and integrity
of the entity in its lifecycle. So;

● Use private setter for a property when you need to
perform any logic while setting that property.

● Define public methods to manipulate such properties.

44

Implementing Domain Driven Design

Example: Methods to change the properties in a controlled
way

45

Implementing Domain Driven Design

● RepositoryId setter made private and there is no way to
change it after creating an Issue because this is what we
want in this domain: An issue can't be moved to another
repository.

● Title setter made private and SetTitle method has been
created if you want to change it later in a controlled way.

● Text and AssignedUserId has public setters since there is
no restriction on them. They can be null or any other
value. We think it is unnecessary to define separate
methods to set them. If we need later, we can add
methods and make the setters private. Breaking changes
are not problem in the domain layer since the domain
layer is an internal project, it is not exposed to clients.

● IsClosed and IssueCloseReason are pair properties.
Defined Close and ReOpen methods to change them
together. In this way, we prevent to close an issue without
any reason.

Business Logic & Exceptions in the Entities

When you implement validation and business logic in the
entities, you frequently need to manage the exceptional cases.
In these cases;

46

Implementing Domain Driven Design

● Create domain specific exceptions.

● Throw these exceptions in the entity methods when
necessary.

Example:

47

Implementing Domain Driven Design

There are two business rules here;

● A locked issue can not be re-opened.

● You can not lock an open issue.

Issue class throws an IssueStateException in these cases to
force the business rules:

There are two potential problems of throwing such exceptions;

1. In case of such an exception, should the end user see the
exception (error) message? If so, how do you localize the
exception message? You can not use the localization
system, because you can't inject and use IStringLocalizer
in the entities.

2. For a web application or HTTP API, what HTTP Status
Code should return to the client?

https://docs.abp.io/en/abp/latest/Localization

48

Implementing Domain Driven Design

ABP's Exception Handling system solves these and similar
problems.

Example: Throwing a business exception with code

● IssueStateException class inherits the BusinessException
class. ABP returns 403 (forbidden) HTTP Status code by
default (instead of 500 - Internal Server Error) for the
exceptions derived from the BusinessException.

● The code is used as a key in the localization resource file
to find the localized message.

Now, we can change the ReOpen method as shown below:

https://docs.abp.io/en/abp/latest/Exception-Handling

49

Implementing Domain Driven Design

Use constants instead of magic strings.

And add an entry to the localization resource like below:

● When you throw the exception, ABP automatically uses
this localized message (based on the current language) to
show to the end user.

● The exception code
(IssueTracking:CanNotOpenLockedIssue here) is also sent
to the client, so it may handle the error case
programmatically.

For this example, you could directly throw
BusinessException instead of defining a specialized
IssueStateException. The result will be same. See the
exception handling document for all the details.

https://docs.abp.io/en/abp/latest/Exception-Handling

50

Implementing Domain Driven Design

Business Logic in Entities Requiring External
Services

It is simple to implement a business rule in an entity method
when the business logic only uses the properties of that entity.
What if the business logic requires to query database or use
any external services that should be resolved from the
dependency injection system. Remember; Entities can not
inject services!

There are two common ways of implementing such a business
logic:

● Implement the business logic on an entity method and
get external dependencies as parameters of the
method.

● Create a Domain Service.

Domain Services will be explained later. But, now let's see how it
can be implemented in the entity class.

https://docs.abp.io/en/abp/latest/Dependency-Injection

51

Implementing Domain Driven Design

Example: Business Rule: Can not assign more than 3 open
issues to a user concurrently

● AssignedUserId property setter made private. So, the only
way to change it to use the AssignToAsync and
CleanAssignment methods.

● AssignToAsync gets an AppUser entity. Actually, it only
uses the user.Id, so you could get a Guid value, like userId.
However, this way ensures that the Guid value is Id of an
existing user and not a random Guid value.

● IUserIssueService is an arbitrary service that is used to get
open issue count for a user. It's the responsibility of the
code part (that calls the AssignToAsync) to resolve the
IUserIssueService and pass here.

52

Implementing Domain Driven Design

● AssignToAsync throws exception if the business rule
doesn't meet.

● Finally, if everything is correct, AssignedUserId property is
set.

This method perfectly guarantees to apply the business logic
when you want to assign an issue to a user. However, it has
some problems;

● It makes the entity class depending on an external
service which makes the entity complicated.

● It makes hard to use the entity. The code that uses the
entity now needs to inject IUserIssueService and pass to
the AssignToAsync method.

An alternative way of implementing this business logic is to
introduce a Domain Service, which will be explained later.

Repositories

A Repository is a collection-like interface that is used by the
Domain and Application Layers to access to the data
persistence system (the database) to read and write the
Business Objects, generally the Aggregates.

https://docs.abp.io/en/abp/latest/Repositories

53

Implementing Domain Driven Design

Common Repository principles are;

● Define a repository interface in the Domain Layer
(because it is used in the Domain and Application Layers),
implement in the Infrastructure Layer
(EntityFrameworkCore project in the startup template).

● Do not include business logic inside the repositories.

● Repository interface should be database provider / ORM
independent. For example, do not return a DbSet from a
repository method. DbSet is an object provided by the EF
Core.

● Create repositories for aggregate roots, not for all
entities. Because, sub-collection entities (of an aggregate)
should be accessed over the aggregate root.

Do Not Include Domain Logic in Repositories

While this rule seems obvious at the beginning, it is easy to leak
business logic into repositories.

54

Implementing Domain Driven Design

Example: Get inactive issues from a repository

IIssueRepository extends the standard IRepository<...> interface
by adding a GetInActiveIssuesAsync method. This repository
works with such an Issue class:

(the code shows only the properties we need for this example)

The rule says the repository shouldn't know the business rules.
The question here is "What is an inactive issue? Is it a business
rule definition?"

55

Implementing Domain Driven Design

Let's see the implementation to understand it:

56

Implementing Domain Driven Design

(Used EF Core for the implementation. See the EF Core
integration document to learn how to create custom
repositories with the EF Core.)

When we check the GetInActiveIssuesAsync implementation,
we see a business rule that defines an in-active issue: The
issue should be open, assigned to nobody, created 30+ days
ago and has no comment in the last 30 days.

This is an implicit definition of a business rule that is hidden
inside a repository method. The problem occurs when we need
to reuse this business logic.

For example, let's say that we want to add an bool IsInActive()
method on the Issue entity. In this way, we can check activeness
when we have an issue entity.

Let's see the implementation:

https://docs.abp.io/en/abp/latest/Entity-Framework-Core
https://docs.abp.io/en/abp/latest/Entity-Framework-Core

57

Implementing Domain Driven Design

We had to copy/paste/modify the code. What if the definition of
the activeness changes? We should not forget to update both
places. This is a duplication of a business logic, which is pretty
dangerous.

A good solution to this problem is the Specification Pattern!

Specifications

A specification is a named, reusable, combinable and testable
class to filter the Domain Objects based on the business rules.

ABP Framework provides necessary infrastructure to easily
create specification classes and use them inside your
application code. Let's implement the in-active issue filter as a
specification class:

https://docs.abp.io/en/abp/latest/Specifications

58

Implementing Domain Driven Design

Specification<T> base class simplifies to create a specification
class by defining an expression. Just moved the expression here,
from the repository.

Now, we can re-use the InActiveIssueSpecification in the Issue
entity and EfCoreIssueRepository classes.

Using within the Entity

Specification class provides an IsSatisfiedBy method that
returns true if the given object (entity) satisfies the specification.
We can re-write the Issue.IsInActive method as shown below:

59

Implementing Domain Driven Design

Just created a new instance of the InActiveIssueSpecification
and used its IsSatisfiedBy method to re-use the expression
defined by the specification.

Using with the Repositories

First, starting from the repository interface:

Renamed GetInActiveIssuesAsync to simple GetIssuesAsync by
taking a specification object. Since the specification (the filter)
has been moved out of the repository, we no longer need to
create different methods to get issues with different conditions
(like GetAssignedIssues(...), GetLockedIssues(...), etc.)

Updated implementation of the repository can be like that:

60

Implementing Domain Driven Design

Since ToExpression() method returns an expression, it can be
directly passed to the Where method to filter the entities.

Finally, we can pass any Specification instance to the
GetIssuesAsync method:

With Default Repositories

Actually, you don't have to create custom repositories to be able
to use specifications. The standard IRepository already extends
the IQueryable, so you can use the standard LINQ extension
methods over it:

61

Implementing Domain Driven Design

AsyncExecuter is a utility provided by the ABP Framework to
use asynchronous LINQ extension methods (like ToListAsync
here) without depending on the EF Core NuGet package. See
the Repositories document for more information.

Combining the Specifications

One powerful side of the Specifications is they are combinable.
Assume that we have another specification that returns true
only if the Issue is in a Milestone:

https://docs.abp.io/en/abp/latest/Repositories

62

Implementing Domain Driven Design

This Specification is parametric as a difference from the
InActiveIssueSpecification. We can combine both specifications
to get a list of inactive issues in a specific milestone:

63

Implementing Domain Driven Design

The example above uses the And extension method to combine
the specifications. There are more combining methods are
available, like Or(...) and AndNot(...).

See the Specifications document for more details about
the specification infrastructure provided by the ABP
Framework.

Domain Services

Domain Services implement domain logic which;

● Depends on services and repositories.

● Needs to work with multiple aggregates, so the logic
doesn't properly fit in any of the aggregates.

Domain Services work with Domain Objects. Their methods can
get and return entities, value objects, primitive types... etc.
However, they don't get/return DTOs. DTOs is a part of the
Application Layer.

https://docs.abp.io/en/abp/latest/Specifications

64

Implementing Domain Driven Design

Example: Assigning an issue to a user

Remember how an issue assignment has been implemented in
the Issue entity:

Here, we will move this logic into a Domain Service.

First, changing the Issue class:

65

Implementing Domain Driven Design

● Removed the assign-related methods.

● Changed AssignedUserId property's setter from private to
internal, to allow to set it from the Domain Service.

The next step is to create a domain service, named
IssueManager, that has AssignToAsync to assign the given issue
to the given user.

IssueManager can inject any service dependency and use to
query open issue count on the user.

66

Implementing Domain Driven Design

We prefer and suggest to use the Manager suffix for the Domain
Services.

The only problem of this design is that Issue.AssignedUserId is
now open to set out of the class. However, it is not public. It is
internal and changing it is possible only inside the same
Assembly, the IssueTracking.Domain project for this example
solution. We think this is reasonable;

● Domain Layer developers are already aware of domain
rules and they use the IssueManager.

● Application Layer developers are already forces to use the
IssueManager since they don't directly set it.

While there is a tradeoff between two approaches, we prefer to
create Domain Services when the business logic requires to
work with external services.

If you don't have a good reason, we think there is no need to
create interfaces (like IIssueManager for the IssueManager) for
Domain Services.

67

Implementing Domain Driven Design

Application Services

An Application Service is a stateless service that implements
use cases of the application. An application service typically
gets and returns DTOs. It is used by the Presentation Layer. It
uses and coordinates the domain objects (entities,
repositories, etc.) to implement the use cases.

Common principles of an application service are;

● Implement the application logic that is specific to the
current use-case. Do not implement the core domain
logic inside the application services. We will come back to
differences between Application Domain logics.

● Never get or return entities for an application service
method. This breaks the encapsulation of the Domain
Layer. Always get and return DTOs.

https://docs.abp.io/en/abp/latest/Application-Services

68

Implementing Domain Driven Design

Example: Assigning an issue to a user

69

Implementing Domain Driven Design

An application service method typically has three steps those
are implemented here;

1. Get the related domain objects from database to
implement the use case.

2. Use domain objects (domain services, entities, etc.) to
perform the actual operation.

3. Update the changed entities in the database.

IssueAssignDto in this example is a simple DTO class:

The last Update is not necessary if your are using EF Core
since it has a Change Tracking system. If you want to take
advantage of this EF Core feature, please see the Discussion
About the Database Independence Principle section above.

IssueAssignDto in this example is a simple DTO class:

70

Implementing Domain Driven Design

Data transfer Objects

A DTO is a simple object that is used to transfer state (data)
between the Application and Presentation Layers. So,
Application Service methods gets and returns DTOs.

Common DTO Principles & Best Practices

● A DTO should be serializable, by its nature. Because,
most of the time it is transferred over network. So, it
should have a parameterless (empty) constructor.

● Should not contain any business logic.

● Never inherit from or reference to entities.

Input DTOs (those are passed to the Application Service
methods) have different natures than Output DTOs (those are
returned from the Application Service methods). So, they will be
treated differently.

https://docs.abp.io/en/abp/latest/Data-Transfer-Objects

71

Implementing Domain Driven Design

Input DTO Best Practices

Do not Define Unused Properties for Input DTOs

Define only the properties needed for the use case! Otherwise,
it will be confusing for the clients to use the Application
Service method. You can surely define optional properties, but
they should effect how the use case is working, when the client
provides them.

This rule seems unnecessary first. Who would define unused
parameters (input DTO properties) for a method? But it
happens, especially when you try to reuse input DTOs.

Do not Re-Use Input DTOs

Define a specialized input DTO for each use case (Application
Service method). Otherwise, some properties are not used in
some cases and this violates the rule defined above: Do not
Define Unused Properties for Input DTOs.

Sometimes, it seems appealing to reuse the same DTO class for
two use cases, because they are almost same. Even if they are
same now, they will probably become different by the time and
you will come to the same problem. Code duplication is a
better practice than coupling use cases.

Another way of reusing input DTOs is inheriting DTOs from
each other. While this can be useful in some rare cases, most of
the time it brings you to the same point.

72

Implementing Domain Driven Design

Example: User Application Service

IUserAppService uses UserDto as the input DTO in all methods
(use cases). UserDto is defined below:

For this example;

● Id is not used in Create since the server determines it.

● Password is not used in Update since we have another
method for it.

● CreationTime is never used since we can't allow client to
send the Creation Time. It should be set in the server.

73

Implementing Domain Driven Design

A true implementation can be like that:

With the given input DTO classes:

74

Implementing Domain Driven Design

This is more maintainable approach although more code is
written.

Exceptional Case: There can be some exceptions for this rule: If
you always want to develop two methods in parallel, they may
share the same input DTO (by inheritance or direct reuse). For
example, if you have a reporting page that has some filters and
you have multiple Application Service methods (like screen
report, excel report and csv report methods) use the same
filters but returns different results, you may want to reuse the
same filter input DTO to couple these use cases. Because, in
this example, whenever you change a filter, you have to make
the necessary changes in all the methods to have a consistent
reporting system.

 Input DTO Validation Logic

● Implement only formal validation inside the DTO. Use
Data Annotation Validation Attributes or implement
IValidatableObject for formal validation.

● Do not perform domain validation. For example, don't
try to check unique username constraint in the DTOs.

Implementing Domain Driven Design

Example: Using Data Annotation Attributes

75

ABP Framework automatically validates input DTOs, throws
AbpValidationException and returns HTTP Status 400 to the
client in case of an invalid input.

Some developers think it is better to separate the validation
rules and DTO classes. We think the declarative (Data
Annotation) approach is practical and useful and doesn't cause
any design problem. However, ABP also supports
FluentValidation integration if you prefer the other approach.

https://docs.abp.io/en/abp/latest/FluentValidation

Implementing Domain Driven Design

76

See the Validation document for all validation options.

Output DTO Best Practices

● Keep output DTO count minimum. Reuse where possible
(exception: Do not reuse input DTOs as output DTOs).

● Output DTOs can contain more properties than used in
the client code.

● Return entity DTO from Create and Update methods.

The main goals of these suggestions are;

● Make client code easy to develop and extend;
○ Dealing with similar, but not same DTOs are

problematic on the client side.
○ It is common to need to other properties on the

UI/client in the future. Returning all properties (by
considering security and privileges) of an entity
makes client code easy to improve without
requiring to touch to the backend code.

○ If you are opening your API to 3rd-party clients that
you don't know requirements of each client.

● Make the server side code easy to develop and extend;
○ You have less class to understand and maintain.
○ You can reuse the Entity->DTO object mapping

code.
○ Returning same types from different methods

make it easy and clear to create new methods.

https://docs.abp.io/en/abp/latest/Validation

Implementing Domain Driven Design

77

Example: Returning Different DTOs from different methods

(We didn't use async methods to make the example cleaner,
but use async in your real world application!)

The example code above returns different DTO types for each
method. As you can guess, there will be a lot of code
duplications for querying data, mapping entities to DTOs.

The IUserAppService service above can be simplified:

Implementing Domain Driven Design

78

With a single output DTO:

● Removed GetUserNameAndEmail and GetRoles since Get
method already returns the necessary information.

● GetList now returns the same with Get.

● Create and Update also returns the same UserDto.

Using the same DTO has a lot of advantages as explained
before. For example, think a scenario where you show a data
grid of Users on the UI. After updating a user, you can get the
return value and update it on the UI. So, you don't need to call
GetList again. This is why we suggest to return the entity DTO
(UserDto here) as return value from the Create and Update
operations.

Implementing Domain Driven Design

79

Discussion

Some of the output DTO suggestions may not fit in every
scenario. These suggestions can be ignored for performance
reasons, especially when large data sets returned or when you
create services for your own UI and you have too many
concurrent requests.

In these cases, you may want to create specialized output
DTOs with minimal information. The suggestions above are
especially for applications where maintaining the codebase is
more important than negligible performance lost.

Object to Object Mapping

Automatic object to object mapping is a useful approach to
copy values from one object to another when two objects have
same or similar properties.

DTO and Entity classes generally have same/similar properties
and you typically need to create DTO objects from Entities.
ABP's object to object mapping system with AutoMapper
integration makes these operations much easier comparing to
manual mapping.

https://docs.abp.io/en/abp/latest/Object-To-Object-Mapping
https://docs.abp.io/en/abp/latest/Object-To-Object-Mapping
http://automapper.org/

Implementing Domain Driven Design

80

● Use auto object mapping only for Entity to output DTO
mappings.

● Do not use auto object mapping for input DTO to Entity
mappings.

There are some reasons why you should not use input DTO to
Entity auto mapping;

1. An Entity class typically has a constructor that takes
parameters and ensures valid object creation. Auto object
mapping operation generally requires an empty
constructor.

2. Most of the entity properties will have private setters and
you should use methods to change these properties in a
controlled way.

3. You typically need to carefully validate and process the
user/client input rather than blindly mapping to the entity
properties.

While some of these problems can be solved through mapping
configurations (For example, AutoMapper allows to define
custom mapping rules), it makes your business code
implicit/hidden and tightly coupled to the infrastructure. We
think the business code should be explicit, clear and easy to
understand.

See the Entity Creation section below for an example
implementation of the suggestions made in this section.

Implementing Domain Driven Design

81

Example Use Cases

This section will demonstrate some example use cases and
discuss alternative scenarios.

Entity Creation

Creating an object from an Entity / Aggregate Root class is the
first step of the lifecycle of that entity. The Aggregate /
Aggregate Root Rules & Best Practices section suggests to
create a primary constructor for the Entity class that
guarantees to create a valid entity. So, whenever we need to
create an instance of that entity, we should always use that
constructor.

See the Issue Aggregate Root class below:

Implementing Domain Driven Design

82

● This class guarantees to create a valid entity by its
constructor.

● If you need to change the Title later, you need to use the
SetTitle method which continues to keep Title in a valid
state.

● If you want to assign this issue to a user, you need to use
IssueManager (it implements some business rules before
the assignment - see the Domain Services section above
to remember).

Implementing Domain Driven Design

83

● The Text property has a public setter, because it also
accepts null values and does not have any validation rules
for this example. It is also optional in the constructor.

Let's see an Application Service method that is used to create
an issue:

Implementing Domain Driven Design

84

CreateAsync method;

● Uses the Issue constructor to create a valid issue. It
passes the Id using the IGuidGenerator service. It doesn't
use auto object mapping here.

● If the client wants to assign this issue to a user on object
creation, it uses the IssueManager to do it by allowing the
IssueManager to perform the necessary checks before
this assignment.

● Saves the entity to the database.

● Finally uses the IObjectMapper to return an IssueDto that
is automatically created by mapping from the new Issue
entity.

Applying Domain Rules on Entity Creation

The example Issue entity has no business rule on entity
creation, except some formal validations in the constructor.
However, there maybe scenarios where entity creation should
check some extra business rules.

For example, assume that you don't want to allow to create an
issue if there is already an issue with exactly the same Title.
Where to implement this rule? It is not proper to implement
this rule in the Application Service, because it is a core
business (domain) rule that should always be checked.

https://docs.abp.io/en/abp/latest/Guid-Generation

Implementing Domain Driven Design

85

This rule should be implemented in a Domain Service,
IssueManager in this case. So, we need to force the Application
Layer always to use the IssueManager to create a new Issue.

First, we can make the Issue constructor internal, instead of
public:

This prevents Application Services to directly use the
constructor, so they will use the IssueManager. Then we can
add a CreateAsync method to the IssueManager:

Implementing Domain Driven Design

86

● CreateAsync method checks if there is already an issue
with the same title and throws a business exception in
this case.

● If there is no duplication, it creates and returns a new
Issue.

Implementing Domain Driven Design

87

The IssueAppService is changed as shown below in order to use
the IssueManager's CreateAsync method:

Implementing Domain Driven Design

88

Discussion: Why is the Issue not saved to the
database in IssueManager?

You may ask "Why didn't IssueManager save the Issue to the
database?". We think it is the responsibility of the Application
Service.

Because, the Application Service may require additional
changes/operations on the Issue object before saving it. If
Domain Service saves it, then the Save operation is duplicated;

● It causes performance lost because of double database
round trip.

● It requires explicit database transaction that covers both
operations.

● If additional actions cancel the entity creation because of a
business rule, the transaction should be rolled back in the
database.

When you check the IssueAppService, you will see the
advantage of not saving Issue to the database in the
IssueManager.CreateAsync. Otherwise, we would need to
perform one Insert (in the IssueManager) and one Update (after
the Assignment).

Implementing Domain Driven Design

89

Discussion: Why is the duplicate Title check not
implemented in the Application Service?

We could simply say "Because it is a core domain logic and
should be implemented in the Domain Layer". However, it
brings a new question "How did you decide that it is a core
domain logic, but not an application logic?" (we will discuss the
difference later with more details).

For this example, a simple question can help us to make the
decision: "If we have another way (use case) of creating an issue,
should we still apply the same rule? Is that rule should always
be implemented". You may think "Why do we have a second
way of creating an issue?". However, in real life, you have;

● End users of the application may create issues in your
application's standard UI.

● You may have a second back office application that is
used by your own employees and you may want to
provide a way of creating issues (probably with different
authorization rules in this case).

● You may have an HTTP API that is open to 3rd-party
clients and they create issues.

● You may have a background worker service that do
something and creates issues if it detects some problems.
In this way, it will create an issue without any user
interaction (and probably without any standard
authorization check).

Implementing Domain Driven Design

90

● You may have a button on the UI that converts
something (for example, a discussion) to an issue.

We can give more examples. All of these are should be
implemented by different Application Service methods (see
the Multiple Application Layers section below), but they
always follow the rule: Title of the new issue can not be same
of any existing issue! That's why this logic is a core domain
logic, should be located in the Domain Layer and should not
be duplicated in all these application service methods.

Updating / Manipulating An Entity

Once an entity is created, it is updated/manipulated by the use
cases until it is deleted from the system. There can be different
types of the use cases directly or indirectly changes an entity.

In this section, we will discuss a typical update operation that
changes multiple properties of an Issue.

This time, beginning from the Update DTO:

Implementing Domain Driven Design

91

By comparing to IssueCreationDto, you see no RepositoryId.
Because, our system doesn't allow to move issues across
repositories (think as GitHub repositories). Only Title is required
and the other properties are optional.

Let's see the Update implementation in the IssueAppService:

Implementing Domain Driven Design

92

● UpdateAsync method gets id as a separate parameter. It
is not included in the UpdateIssueDto. This is a design
decision that helps ABP to properly define HTTP routes
when you auto expose this service as an HTTP API
endpoint. So, that's not related to DDD.

● It starts by getting the Issue entity from the database.

● Uses IssueManager's ChangeTitleAsync instead of directly
calling Issue.SetTitle(...). Because we need to implement
the duplicate Title check as just done in the Entity
Creation. This requires some changes in the Issue and
IssueManager classes (will be explained below).

● Uses IssueManager's AssignToAsync method if the
assigned user is being changed with this request.

● Directly sets the Issue.Text since there is no business rule
for that. If we need later, we can always refactor.

● Saves changes to the database. Again, saving changed
entities is a responsibility of the Application Service
method that coordinates the business objects and the
transaction. If the IssueManager had saved internally in
ChangeTitleAsync and AssignToAsync method, there
would be double database operation (see the Discussion:
Why is the Issue not saved to the database in
IssueManager? above).

https://docs.abp.io/en/abp/latest/API/Auto-API-Controllers

Implementing Domain Driven Design

93

● Finally uses the IObjectMapper to return an IssueDto that
is automatically created by mapping from the updated
Issue entity.

As said, we need some changes in the Issue and IssueManager
classes.

First, made SetTitle internal in the Issue class:

Then added a new method to the IssueManager to change the
Title:

Implementing Domain Driven Design

94

Domain Logic & Application Logic

As mentioned before, Business Logic in the Domain Driven
Design is split into two parts (layers): Domain Logic and
Application Logic:

Domain Logic consists of the Core Domain Rules of the system
while Application Logic implements application specific Use
Cases.

While the definition is clear, the implementation may not be
easy. You may be undecided which code should stand in the
Application Layer, which code should be in the Domain Layer.
This section tries to explain the differences.

Implementing Domain Driven Design

95

Multiple Application Layers

DDD helps to deal with complexity when your system is large.
Especially, if there are multiple applications are being
developed in a single domain, then the Domain Logic vs
Application Logic separation becomes much more important.

Assume that you are building a system that has multiple
applications;

● A Public Web Site Application, built with ASP.NET Core
MVC, to show your products to users. Such a web site
doesn't require authentication to see the products. The
users login to the web site, only if they are performing
some actions (like adding a product to the basket).

● A Back Office Application, built with Angular UI (that
uses REST APIs). This application used by office workers of
the company to manage the system (like editing product
descriptions).

● A Mobile Application that has much simpler UI
compared to the Public Web Site. It may communicate to
the server via REST APIs or another technology (like TCP
sockets).

Implementing Domain Driven Design

96

Every application will have different requirements, different use
cases (Application Service methods), different DTOs, different
validation and authorization rules... etc.

Mixing all these logics into a single application layer makes your
services contain too many if conditions with complicated
business logic makes your code harder to develop, maintain
and test and leads to potential bugs.

If you've multiple applications with a single domain;

● Create separate application layers for each
application/client type and implement application
specific business logic in these separate layers.

● Use a single domain layer to share the core domain logic.

Implementing Domain Driven Design

97

Such a design makes it even more important to distinguish
between Domain logic and Application Logic.

To be more clear about the implementation, you can create
different projects (.csproj) for each application types. For
example;

● IssueTracker.Admin.Application &
IssueTracker.Admin.Application.Contracts projects for the
Back Office (admin) Application.

● IssueTracker.Public.Application &
IssueTracker.Public.Application.Contracts projects for the
Public Web Application.

● IssueTracker.Mobile.Application &
IssueTracker.Mobile.Application.Contracts projects for the
Mobile Application.

Examples

This section contains some Application Service and Domain
Service examples to discuss how to decide to place business
logic inside these services.

Implementing Domain Driven Design

98

Example: Creating a new Organization in a Domain Service

Implementing Domain Driven Design

99

Let's see the CreateAsync method step by step to discuss if the
code part should be in the Domain Service, or not;

● CORRECT: It first checks for duplicate organization
name and and throws exception in this case. This is
something related to core domain rule and we never
allow duplicated names.

● WRONG: Domain Services should not perform
authorization. Authorization should be done in the
Application Layer.

● WRONG: It logs a message with including the Current
User's UserName. Domain service should not be depend
on the Current User. Domain Services should be usable
even if there is no user in the system. Current User
(Session) should be a Presentation/Application Layer
related concept.

● WRONG: It sends an email about this new organization
creation. We think this is also a use case specific business
logic. You may want to create different type of emails in
different use cases or don't need to send emails in some
cases.

https://docs.abp.io/en/abp/latest/Authorization
https://docs.abp.io/en/abp/latest/CurrentUser
https://docs.abp.io/en/abp/latest/CurrentUser
https://docs.abp.io/en/abp/latest/Emailing

Implementing Domain Driven Design

100

Example: Creating a new Organization in an Application
Service

Implementing Domain Driven Design

101

Let's see the CreateAsync method step by step to discuss if the
code part should be in the Application Service, or not;

● CORRECT: Application Service methods should be unit of
work (transactional). ABP's Unit Of Work system makes
this automatic (even without need to add [UnitOfWork]
attribute for the Application Services).

● CORRECT: Authorization should be done in the
application layer. Here, it is done by using the [Authorize]
attribute.

● CORRECT: Payment (an infrastructure service) is called to
charge money for this operation (Creating an
Organization is a paid service in our business).

● CORRECT: Application Service method is responsible to
save changes to the database.

● CORRECT: We can send email as a notification to the
system admin.

● WRONG: Do not return entities from the Application
Services. Return a DTO instead.

https://docs.abp.io/en/abp/latest/Unit-Of-Work
https://docs.abp.io/en/abp/latest/Authorization
https://docs.abp.io/en/abp/latest/Emailing

Implementing Domain Driven Design

102

Discussion: Why don't we move the payment logic into the
domain service?

You may wonder why the payment code is not inside the
OrganizationManager. It is an important thing and we never
want to miss the payment.

However, being important is not sufficient to consider a code
as a Core Business Logic. We may have other use cases where
we don't charge money to create a new Organization.
Examples;

● An admin user can use a Back Office Application to create
a new organization without any payment.

● A background-working data
import/integration/synchronization system may also need
to create organizations without any payment operation.

As you see, payment is not a necessary operation to create a
valid organization. It is a use-case specific application logic.

Implementing Domain Driven Design

103

Example: CRUD Operations

This Application Service does nothing itself and delegates all
the work to the Domain Service. It even passes the DTOs to the
IssueManager.

Implementing Domain Driven Design

104

● Do not create Domain Service methods just for simple
CRUD operations without any domain logic.

● Never pass DTOs to or return DTOs from the Domain
Services.

Application Services can directly work with repositories to
query, create, update or delete data unless there are some
domain logics should be performed during these operations. In
such cases, create Domain Service methods, but only for those
really necessary.

Do not create such CRUD domain service methods just by
thinking that they may be needed in the future (YAGNI)! Do it
when you need and refactor the existing code. Since the
Application Layer gracefully abstracts the Domain Layer, the
refactoring process doesn't effect the UI Layer and other clients.

https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

Implementing Domain Driven Design

105

Reference Books

If you are more interested in the Domain Driven Design and
building large-scale enterprise systems, the following books are
recommended as reference books;

● "Domain Driven Design" by Eric Evans

● "Implementing Domain Driven Design" by Vaughn
Vernon

● "Clean Architecture" by Robert C. Martin

www.abp.io

